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1 Introduction

In these notes I write about the Variational Expectation Maximization/Empirical Bayes/Type II max-
imum likelihood method. I start this post by writing about the Expectation Maximization method
(Dempster et al., 1977) and from there I will move on to the Variational method1.

2 Derivation of Expectation Maximization

Expectation Maximization (EM) is the most known algorithm for iteratively optimizing the Gaussian
Mixture Model method. It finds the Maximum Likelihood Estimates of model variables in the presence
of latent variables in this model. Here we provide the derivation of the EM algorithm and furthermore
the intuition behind the equations2. More details on the intuition are provided in Section 3.

In general the goal is to maximize the log-likelihood l(x) = log p(x|θ) = log
∑

z p(x, z|θ) via gradient
descent updates. There are times where we do not want to optimize a method via using gradients for
various reasons. In these cases it is useful to use other routines like EM. Let us provide the derivation
of ELBO from log-likelihood as follows:

l(x) = log p(x|θ) = log
∑
z

p(x, z|θ)

= log
∑
z

q(z|x, θ)p(x, z|θ)
q(z|x, θ)

≥
∑
z

q(z|x, θ) log p(x, z|θ)
q(z|x, θ)

≡ ELBO(q, θ) (1)

where q(z|x, θ) is a distribution of latent variables z. What we are doing here is that instead of
directly maximizing the log-likelihood l(x), EM is maximizing the ELBO(q, θ) with coordinate ascent
with the E and M steps, where:

1Part of these notes was inspired by these lecture notes.
2The derivation was taken from these lecture notes, and these ones.

1

https://www.math.kth.se/matstat/gru/Statistical%20inference/Lecture8.pdf
https://www.ics.uci.edu/~smyth/courses/cs274/readings/domke_notes_on_EM.pdf
https://www.cs.cmu.edu/~awm/15781/assignments/EM.pdf
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E-Step: q(i+1) = argmax
q

ELBO(q, θ(i))

M-Step: θ(i+1) = argmax
θ

ELBO(q(i+1), θ)

We iterate between E and M steps. It can been observed that in E-step above we have a fixed θ and
we optimized in the space of distributions q, which might be time-consuming and difficult, since the
space of distributions q is very vast. Therefore we go ahead and show that q(i+1) = p(z|z, θ(i)). Basi-
cally we need to mazimize ELBO(q, θ), which is equivalent to maximizing

∑
z q(z|x, θ) log p(x, z|θ)−∑

z q(z|x, θ) log q(z|x, θ). The solution of that is q(z|x, θ) = p(z|x, θ). Let us restate the maximization
problem of

∑
z q(z|x, θ) log p(x, z|θ)−

∑
z q(z|x, θ) log q(z|x, θ) as follows:

max
q(z|x,θ)

∑
z

q(z|x, θ) log p(x, z|θ)−
∑
z

q(z|x, θ) log q(z|x, θ)

s.t. q(z|x, θ) ≥ 0,
∑
z

q(z|x, θ) = 1

We solve this with the use of Lagrangian mutlipliers and we have:

L =
∑
z

q(z|x, θ) log p(x, z|θ)−
∑
z

q(z|x, θ) log q(z|x, θ)−
∑
z

λzq(z|x, θ)− ν(1−
∑
z

q(z|x, θ)) (2)

We take the derivative of Eq. (2) and we have:

dL
dq(z|x, θ)

= log p(x, z|θ)− log q(z|x, θ)− 1− λz − ν = 0 (3)

We take the derivative of Eq. (2) w.r.t nu and λz and we get equations similar to Eq. (3). We solve
the systemf of equations and eventually we end up with:

q(z|x, θ) ∝ p(x, z|θ) (4)

which is true and at the same time q(z|x, θ) is a normalized distribution if q(z|x, θ) = p(z|x, θ). So
we have proved in the expectation step that we maximize the expectation w.r.t q(z|x, θ) if q(z|x, θ) =
p(z|x, θ).

We continue from Eq. (1):

l(x) ≥ ELBO(q, θ)

=
∑
z

q(z|x, θ) log p(x, z|θ)
q(z|x, θ)

=
∑
z

q(z|x, θ) log p(x, z|θ)−
∑
z

q(z|x, θ) log q(z|x, θ)

= Q(θ|θ(i)) +H(q)

where we have shown that maximizing ELBO(q, θ) is the same as maximizing the expectation of
the log-likelihood

∑
z q(z|x, θ) log p(x, z|θ), where the maximum of that is when q(z|x, θ) = p(z|x, θ),
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so the maximum expectation is then
∑

z p(z|x, θ) log p(x, z|θ). There we rewrite the E and M steps as
follows:

E-Step: Q(θ, θ(i)) = Ep(z|x,θ(i))[log p(x, z|θ)]
M-Step: θ(i+1) = argmax

θ
Ep(z|x,θ(i))[log p(x, z|θ)]

This was more abstract so in the next sections we provide more specific examples for the EM
algorithm.

3 Expectation Maximization for Gaussian Mixture Model

We start by briefly presenting Gaussian Mixture model (GMM). Gaussian Mixture Model is finite
mixture model where each of the K components is a Guassian density with parameters mean µk and
covariance matrix Σk. Then the Gaussian Mixture model is defined as:

p(xi|Θ) =

K∑
k=1

wkpk(xi|zik = 1, θk) (5)

where pk(xi|θk) = 1
(2π)d/2|Σk|1/2

exp
[
− 1

2 (xi − µk)
⊺Σ−1

k (xi − µk)
]
is multivariate Gaussian density

and a component of the Gaussian Mixture model, and wk is the weight of component k, which is the
probability that an instance x was generated by that component k.

In order to train a Gaussian Mixture Model we use the maximum likelihood. We define the
likelihood as the following:

l(θ) = P (D|Θ) =

N∑
i=1

log

(
K∑

k=1

wkp(xi|zik = 1, θk)

)
(6)

where D is that data that we are using.
In general the Gaussian Mixture model assumes the data instances were generated from a mixture

of a finite number of Gaussian distributions, of which distributions we don’t know the parameters. On
the one hand, Guassian Mixture model is the fastest algorithm to learn mixture models, and since it
maximizes only the likelihood, it does not have any biases for the mean of the distributions or the
structure sizes. On the other hand when there exists a lot of data the estimation of the covariance
matrices of the distributions might become intractable and end up in a singular solution (GMM is
notorious for diverging and finding solution with infinite likelihood). Moreover, GMM uses all the
components that we have defined, and some of them might be redundant, which introduces the need
of statistical criteria in order to find the right number of components3

Going back to Eq. (6), the logical step to solve this equation is to take partial derivatives of the log
of the likelihood with respect to all the model parameters, set them to 0 and apply gradient descent
to these equations. For that we need to set hyperparameters and some constraints that the sum of
the weights ak is equal to 0. Here we circle back to an easier solution for training GMMs that we
mentioned earlier, the EM algorithm. EM iterates between between two steps, the Expectation step

3More information on the GMM can be found in this scikit-learn page.
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(E-step) and the Maximization step (M-step). The E-step finds the probabilities of different data
X given the observed data y (targets) and the parameter estimates θ. The log-likelihoods are also
computed on this step. More formally the E-step computes the expected log-likelihood with respect
to the probability of the hidden variables given the data X and fixed values of θs. M-step tries to
maximize the expectation of the E-step, where it finds new parameter values for the θs that give the
maximum expected log-likelihoods.

3.1 Expectation Step (E-step)

We write again the full likelihood:

L(x, z|θ) =
N∏
i=1

K∏
k=1

[wkpk(xi|θk)]I(zi=k)
(7)

and we take the log of Eq. (7) in order to find the log-likelihood:

logL(x, z|θ) =
N∑
i=1

K∑
k=1

I(zi = k) log [wkpk(xi|θk)] (8)

Let θ be the unknown parameters of the GMM and θn be the estimates of these parameters from
the last iteration. We define the expectation for the E-step:

Q(θ, θn) = EZ|X,θn [logL(x, z|θ)] (9)

= EZ|X,θn

[
N∑
i=1

K∑
k=1

I(zi = k) log [wkpk(xi|θk)]

]
(10)

=

N∑
i=1

K∑
k=1

EZ|X,θn [I(zi = k)] log [wkpk(xi|θk)] (11)

=

N∑
i=1

K∑
k=1

p(zi = k|xi, θn) log [wkpk(xi|θk)] (12)

=

N∑
i=1

K∑
k=1

p(xi|zi = k, θn)p(zi = k)∑K
l=1 p(xi|zi = l, θn)p(zi = l)

log [wkpk(xi|θk)] (13)

=

N∑
i=1

K∑
k=1

p(xi|zi = k, θn)wk∑K
l=1 p(xi|zi = l, θn)wl

log [wkpk(xi|θk)] (14)

(15)

On the above equation between the last and the before the last equation we use the Bayes rule.

We set wik = p(xi|zi=k,θn)wk∑K
l=1 p(xi|zi=l,θn)wl

and we finally get the expectation that we are looking to maximize:

Q(θ, θn) =

N∑
i=1

K∑
k=1

wik log [wkpk(xi|θk)] (16)
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In the E-step for GMMs, we need to find the ”membership ”weights” wik in order to compute the
expectation for the M-step. The way that we compute the ”membership ”weights” wik in GMM is by
computing the cluster weight times the probability of the cluster that it is assigned, divided by the
sum of all the cluster weights times their probabilities. This fraction makes up each point’s weight for
its assigned cluster.

3.2 Maximization Step (M-step)

In the M-step we find the parameter values for θ that maximize the expectation Q(θ, θn) from the
E-step. Basically we find:

θn+1 = argmax
θ

Q(θ, θn) (17)

This can be solved by obtaining the MLE of the parameters θ. If we expand Eq. (16) we get:

Q(θ, θn) =
N∑
i=1

K∑
k=1

wik

[
logwk − 1

2
log |Σk| −

1

2
(xi − µk)

⊺Σ−1
k (xi − µk)−

d

2
log(2π)

]
(18)

We observe that θs have closed-form solutions since Eq. (18) appears to be in the form of a weighted
MLE for a normal distribution. wik and µ/Σ appear in separate linear terms so they can be maximized
independently. We find the MLE for every parameter θ, wk, µ and Σ and we get the following:

wk =

∑n
i=1 wik

n
(19)

µk =

∑n
i=1 wikxi∑n
i=1 wik

(20)

Σk =

∑n
i=1 wik(xi − µk)(xi − µk)

⊺∑n
i=1 wik

(21)

We can also think of EM for GMM in a more intuitive way. For instance The weight of each cluster
is the sum of the weights of the data points assigned to it, divided by the number of all data points.
In the nominator we use the weights of the data points, rather than just the number of points because
every data point has a probability of being assigned in a specific cluster. Same goes for the mean and
the variance. It is similar to computing the empirical average and variance but here we multiply and
divide by the assigned weights.

We terminate the iterative EM algorithm by detecting convergence. The way to do it is when the
value of the log-likelihood or the average of the ”membership weights” changes by less than a small
threshold.

4 Expectation Maximization for Exponential families

The probability density of an exponential family is the following:

pθ(x) = h(x) exp(θ⊺T (x)−A(θ))

= h(x) exp(−A(θ)) exp(θ⊺T (x))

Last modified: March 14, 2022 5
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where we set c(θ) = exp(−A(θ)) ⇒ A(θ) = − log c(θ), and therefore we have h(x)c(θ) exp(θ⊺T (x)).
In general A(θ) is called the log-partition function since it is the logarithm of a normalization factor.
If not, then p(x) would not be a probability distribution. A(θ) is defined as follows:

A(θ) = log

[∫
h(x) exp(θ⊺T (x))dx

]
︸ ︷︷ ︸

Q(θ)

(22)

The first derivative of A(θ) is the following:

dA(θ)

dθ
=

1

Q(θ)

dQ(θ)

dθ
=

Q′θ

Q(θ)

=

∫
h(x) exp(θ⊺T (x))T (x)dx∫

h(x) exp(θ⊺T (x))dx

=

∫
h(x) exp(θ⊺T (x))T (x)dx

expA(θ)

=

∫
h(x) exp(θ⊺T (x)−A(θ))T (x)dx

=

∫
pθ(x)T (x)dx

= Eθ[T (x)] (23)

⇒ Eθ[T (x)] =
−d log c(θ)

dθ

The second derivative of A(θ) is the following:

d2A(θ)

dθ2
=

d

dθ

[
Q′(θ)

Q(θ)

]
=

d

dθ

[
Q′(θ)

1

Q(θ)

]
=

Q′′(θ)

Q(θ)
− (Q′)2

(Q(θ))2

=

∫
h(x) exp(θ⊺T (x))T 2(x)dx∫

h(x) exp(θ⊺T (x))dx
−
(
Q′(θ)

Q(θ)

)2

from Eq. (23)

=

∫
h(x) exp(θ⊺T (x))T 2(x)dx∫

h(x) exp(θ⊺T (x))dx
− (Eθ[T (x)])

2

= Eθ[T
2(x)]− (Eθ[T (x)])

2 = covpθ
[T (θ)]

The log-likelihood of pθ(x) is the following:

l(x, θ) = log c(θ) + θ⊺T (x) + const (24)

We then have Y as observed and Z as unobserved variables such as X = (Y,Z). The expectation
of the log-likelihood is then:

Last modified: March 14, 2022 6
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Q(θ|θ(i)) = E[l(x, θ|θ(i))]
= E[log c(θ) + θ⊺T (x) + const]

= E[log c(θ)] + E[θ⊺T (x)]
= log c(θ) + θ⊺E[T (x)]

where T (y) = E[T (y, z|y)]. So we have the expectation as follows:

Q(θ|θ(i)) = log c(θ) + θ⊺T (y) (25)

We maximize expectation in Eq. (25) with differentiation w.r.t θ and then we equalize it to 0. We

also use from Eq. (23) that Eθ[T (x)] =
−d log c(θ)

dθ and therefore we have:

dQ(θ|θ(i))
dθ

=
d log c(θ)

dθ
+ T (y)

= −Eθ[T (x)] + E[T (y, z|y)]
= 0

⇒ E[T (y, z|y)] = −Eθ−(i)[T (x)]

We note that E[T (y, z|y)] is the expectation of the incomplete data and Eθ[T (x)] is the expectation
of the complete data.

5 Expectation Maximization in Bayesian estimation

The EM algorithm can also be used to find a maximum a posteriori (MAP) estimate in a Bayesian
setup. Let f(θ) be a prior density function, f(θ|y) be the posterior function of the observed data y
and f(θ|x) be the posterior function of the complete data x. The goal is to find the f(θ|y) for the
unobserved data. Then using Bayes rule we have that f(θ|y) ∝ f(y|θ)f(θ). The log of the posterior is
then log f(θ|y) = log f(y|θ) + log f(θ). So we find the MAP value as follows:

θMAP = argmax
θ

(log f(y|θ) + log f(θ)) (26)

Then we define the EM algorithm.

E-Step. Compute the expectation of the posterior:

Eθ[log f(θ|x)|y] = Eθ[log f(x|θ)|y] + log f(θ) (27)

M-step. We maximize Eq. (27) by maximizing E[log f(x|θ)|y] as we normally do in the EM algo-
rithm. We note here again that E[log f(x|θ)|y] is the Expectation of the log-likelihood that we need
to maximize.

Basically in the EM algorithm in bayesian setups, we try find the posterior by maximizing the
expectation of the log-likelihood (normal EM algorithm) plus the log of the prior.

Last modified: March 14, 2022 7
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6 Monte Carlo Expectation Maximization algorithm

Sometimes the expectation in the E-step is difficult to compute. So another way is to approximate the
expectation with Monte Carlo methods. This method is called Monte Carlo Expectation Minimization
(MCEM) (Levine and Casella, 2001; Wei and Tanner, 1990). We can rewrite the expectation Q(θ|θ(i))
with X = (Y,Z), where Z are the latent variables (unobserved) and Y the observed as follows:

Q(θ|θ(i)) = Eθ(i) [log fX|Θ(X|θ)|Y ] (28)

= Eθ(i) [log fX|Θ((Y,Z)|θ)|Y ] (29)

(30)

Then the MCEM algorithm is the following:

E-step. We draw z samples from fZ|Y,Θ(z|y, θ(i)) and plug in the samples for the latent variable.
After that we use the same process as in EM. The corresponding expectation is the following:

Q(θ|θ(i)) =
1

M

M∑
m=1

log fX|Θ((y, zm)|θ) (31)

M-step. We maximize Q(θ|θ(i)) in Eq. (31).
[NEED TO ADD MORE DETAILS ON THE MCEM. READ THE MAIN PAPER]

6.1 Stochastic Expectation Maximization algorithm

Stochastic Expectation Maximization is a special case of MCEM in which we use only one sample,
M = 1.

Last modified: March 14, 2022 8
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