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1 Introduction

This document contains information and and overview of papers that introduce
Particle VI methods.

2 Variational Inference

Given a joint prior distribution p(x, z) with latent variables z and observations
x we find a variational distribution qϕ(z) that approximates the target posterior
p(z|x). This is Variational Inference. The most popular and common way to do
that is by minimizing KL divergence:

DKL(qϕ(z)||p(z|x)) =
∫

qϕ(z) log
qϕ(z)

p(z|x)
dz (1)

We have that DKL(qϕ(z)||p(z|x)) = 0 if and only if qϕ(z) = p(z|x). If we
continue Eq. (1) we have the following:
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DKL(qϕ(z)||p(z|x)) =

=

∫
qϕ(z) log

qϕ(z)

p(z|x)
dz

= −
∫

qϕ(z) log
p(z|x)
qϕ(z)

dz

= −
∫

qϕ(z) log
p(z, x)

p(x)qϕ(z)
dz

= −
∫

qϕ(z) log
p(z, x)

qϕ(z)
dz +

∫
qϕ(z) log p(x)dz

= −
∫

qϕ(z) log p(z, x)dz +

∫
qϕ(z) log qϕ(z)dz︸ ︷︷ ︸

−L=−ELBO=−Eqϕ(z)[log p(z,x)]+H[qϕ(z)]

+

∫
qϕ(z) log p(x)dz︸ ︷︷ ︸

log p(x)

⇒ DKL(qϕ(z)||p(z|x)) = −L+ log p(x)

⇒ L = log p(x)−DKL(qϕ(z)||p(z|x))
⇒ log p(x) = L+DKL(qϕ(z)||p(z|x))
⇒ log p(x) ≥ L

= Eqϕ(z)[log p(z, x)− qϕ(z)]

Eq. (1) is in general intractable since the target posterior distribution p(z|x)
is unormalized and we need to integrate over all configurations of the hidden
variables in order to compute the denominator in the target posterior distribu-
tion:

p(z|x) = p(x|z)p(z)
p(x)

=
p(x|z)p(z)∫

z
p(x|z)

(2)

3 Sliced Wasserstein Variational Inference

This VI method does not utilize KL divergence, but minimizes Sliced Wasser-
stein distance (Bonneel et al., 2015), which reduces computational inefficiency
by projecting high dimensional probability distributions into univariate slices.
Sliced Wasserstein distance can be easily approximated by a few MCMC steps.
This method called Sliced Wasserstein Variational Interence(SWVl) (Yi and
Liu, 2022).

3.1 Wasserstein distance

Wasserstein distance arises in the context of optimal transport problem (Villani,
2009), and measures the cost of moving probability mass to transform a proba-
bility distribution to another. We define marginal distribution p(x) in X , q(y)
in Y,

∏
(p, q) a set of any coupled joint distributions γ(x, y) where

∫
γ(x, y)dx =
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q(y) and
∫
γ(x, y)dy = p(x). These two last properties,

∫
γ(x, y)dx = q(y) and∫

γ(x, y)dy = p(x), must be satisfied and they basically mean that the two qual-
ities p(x) and q(y) need to be of equivalent size. We note that

∫
γ(x, y) denotes

a transportation plan. Then the c-Wasserstein distance is defined as :

Wc(p, q) =

{
inf

γ∈
∏

(p,q)

∫
X×Y

||x− y||cdγ(x, y)
} 1

c

(3)

where ||x− y|| is the cost function of moving a point from X to Y. The inf
symbol in Eq. (3) means the greatest lower bound of the set. Also in Eq. (3)
c ≥ 1, and if c = 1 then Wc is called Earth Mover distance. The choice of
c affects the Wasserstein distance for instance in the case of outliers. Let us
compare the choices of c = 1 and c = 2. We define a probability density that is
95% in the range of [0, 1] but there are some outliers, 5% in the range [5,6]. The
goal is to move this probability density. In this case theW2 distance will be much
higher than the W1. This happens because W1 penalizes less the outliers and
therefore is more robust thanW2. So the best transportation plan is dependent
on the outliers and moving the outliers’ mass effectively is important 1.

Intuitively, the c-Wasserstein distance finds eventually an optimal joint dis-
tribution γ(x, y) that minimizes the expected cost functionWc in Eq. (3). Min-
imizing Eq. (3) is generally difficult and computationally expensive since we
have to find the infimum of all sets. We can rewrite the c-Wasserstein distance
in a univariate case as an analytical solution:

Wc(p, q) =

{∫ 1

0

|F−1
p (t)− F−1

q (t)|cdt
} 1

c

=

{∫
X
|x− F−1

q (Fp(x))|cdx
} 1

c

(4)

where F (·) is a cumulative distribution function (CDF) and F−1(·) is a
quantile function of a probability distribution (or inverse cumulative distribution
function), and the F−1

q (Fp(·)) is the transportation map that moves probability
density mass from p(x) to q(y). We can use Eq. (4) to estimate c-Wasserstein
distance by sorting samples. We note that optimal transport preserves the order
of probability mass elements so mass at quantile t of p moves to quantile t of
q. Fig. 1 depicts an intuitive example of how optimal transport, and therefore
how c-Wasserstein distance works.

3.2 Sliced Wasserstein distance

Drawing motivation from the univariate case for c-Wasserstein distance we
briefly present Sliced Wasserstein distance. We start by introducing Radon
transformation (Beylkin, 1984). For a density f the Radon transform repre-
sents the projection data obtained as the output of a tomographic scan. So the
inverse can reconstruct the density. Let h(·) be a function h(·) : Rd → R. The
Radon transform is the following:

1A more detailed explanation can be found in https://stats.stackexchange.com/

questions/490069/what-is-the-intuitive-difference-between-wasserstein-1-distance-and-wasserstein
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Figure 1: “Horizontal” distances where the transport T is calculated in the
picture on the right as in the 1D case by imposing equality between the blue
and red areas of functions f and g respectively by using CFD functions. In this
specific case and according to Eq. (4) where T (x) = F−1

q (Fp(x)). Figure taken
from Santambrogio (2015).

hR
θ (l) =

∫
S:l=⟨x,θ⟩

h(x)dS (5)

Radon transform defines a surface integral on a hyper-plane S : l = ⟨x, θ⟩
where l ∈ R and θ ∈ Sd−1, where Sd−1 is a unit ball embedded in Rd. So
for any pair of vectors θ and h we obtain a sliced function hR

θ (·), and the
sliced function in Eq. (5) is univariate since Sd−1 is a unit ball. Basically Radon
transform projects a high dimensional distribution into a univariate distribution.
Radon transform of a density can be defined as a series of line integrals through
that density at different offsets from the origin. The value of the density at a
particular line is equal to the line integral of the density over that line. This is
depicted in Fig. 2.

Figure 2: Radon transform of a density can be defined as a series of line integrals
through that density at different offsets from the origin. Figure taken from this
link.

Leveraging the fact that Eq. (5) is univariate we define the Sliced Wasserstein
distance for distributions p(x) and q(y) as the average distance of these slices
as follows:
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SWc(p, q) =

(∫
θ∈Sd−1

Wc
c (p

R
θ , q

R
θ )dθ

) 1
c

(6)

So given an empirical distribution p̂ = 1
n

∑n
i=1 δxi

, its Radon transformation
is p̂Rθ = 1

n

∑n
i=1 δ⟨xi,θ⟩. We calculate Sliced Wasserstein distance in Eq. (6) via

estimating samples as shown in Algorithm 1. We sort the samples since we want
to calculate the closest distances between the slices of the two distributions p
and q.

Algorithm 1 Estimation of Sliced Wasserstein Distance with Samples

Require: p̂ = 1
n

∑n
i=1 δxi and q̂ = 1

n

∑n
i=1 δyi

for k = 0, 1, . . . ,m do
Sample θk from Sd−1 uniformly ▷ we sample θ from the unit ball.
Obtain slices and sort {⟨xi, θk⟩} → {⟨xj , θk⟩} and {⟨yi, θk⟩} → {⟨yj , θk⟩}

▷ we take slices and sort them.

return SWc(p̂, q̂) =
(

1
mn

∑m
k=1

∑n
j=1 | ⟨xj , θk⟩ − ⟨yj , θk⟩ |c

) 1
c

end for

3.3 Proposed Method

Following from the previous subsections we finally end up with the proposal,
Sliced Wasserstein Variational Inference (SWVI). Let qϕ(z) be the variational
distribution parameterized by ϕ, and p(z|x) the target posterior distribution.
We need to find optimal parameter ϕ⋆ that minimizes Sliced Wasserstein dis-
tance between qϕ(z) and p(z|x). So we have the same problem to solve:

ϕ⋆ = argmin
ϕ
SWc(p, qϕ) (7)

Due to the intractability of p(z|x) as we mentioned in Eq. (1), we use MCMC
to estimate the distance between qϕ(z) and p(z|x). Let K(·) be a transition
kernel of an MCMC with the stationary distribution p(z|x), and qϕ(z) to be the
initial distribution that we start sampling from with MCMC. Let qt(z) be the
marginal distribution of MCMC after t transitions. Then we would have:

qt(z) =

∫
qt−1(z′)K(z|z′)dz′ (8)

where q0(z) = qϕ(z). For t → ∞ qt(z) converges to p(z|x) because of the
stationary property of MCMC. So we could evaluate SWc(p, q) directly via:

SWc(p, qϕ) = SWc(q
t, qϕ) as t→∞ (9)

This is of course time consuming and there are also other problems to con-
sider such as the burn-in period. Instead we evaluate a local distance SWc(q

t, qϕ)
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with just a few t steps of MCMC. Then we optimize use this local distance
SWc(q

t, qϕ) to update parameters ϕ with Gradient Descent as follows:

ϕ′ ← ϕ− a∇ϕSWc(q
t, qϕ) (10)

qt(z) is an improvement of qϕ and minimizing the Sliced Wasserstein dis-
tance between those two guides the variational distribution qϕ(z) towards dis-
tribution p(z|x). What we can do in this case is to use Monte Carlo methods
to estimate SWc(q

t, qϕ) as described in Algorithm 1. The difference in Algo-
rithm 1 is that we sample from qϕ(z) and qt(z) instead of qϕ(z) and p(z|x). Let{
z0i
}
i=1,2,...,n

∼ qϕ(z) and {zti}i=1,2,...,n ∼ qt(z). Then we approximate Sliced

Wasserstein distance with:

SWc(q
t, qϕ) ≈ L(

{
z0i
}
,
{
zti
}
) (11)

Basically we rewrite Sliced Wasserstein distance as a function of two sets of
samples. In order to optimize the parameters of variational distribution qϕ(z)
we need to reparameterize the samples of its set

{
z0i
}
i=1,2,...,n

, since the samples

are not differentiable yet. For that we use an amortized sampler (a parametric
probability distribution or a flexible neural network) as z(ϕ) = gϕ(ϵ), ϵ ∼ r(ϵ),
where r(ϵ) is a noise distribution and gϕ(ϵ) is a parametric model. Using the
chain rule on Eq. (11) we have:

∇ϕL(
{
z0i
}
,
{
zti
}
) =

n∑
i=1

∇ziL(
{
z0i
}
,
{
zti
}
)∇ϕz

0
i (12)

Algorithm 2 Sliced Wasserstein Variational Inference (SWVI)

Require: An unnormalized probability distribution p(z|x) and learning rate a.
sampler qϕ0(z)
for m = 0, 1, . . . , s− 1 do

Sample
{
z0i
}
i=1,2,...,n

from qϕm(z)

Run MCMC towards p(z|x) with particles (samples) initialized at{
z0i
}
i=1,2,...,n

to get {zti}i=1,2,...,n

ϕm+1 = ϕm − a∇ϕL(
{
z0i
}
, {zti} return qϕs(z)

end for
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