Particle VI methods

Tony

February 2022

1 Introduction

This document contains information and and overview of papers that introduce Particle VI methods.

2 Variational Inference

Given a joint prior distribution $p(x, z)$ with latent variables z and observations x we find a variational distribution $q_{\phi}(z)$ that approximates the target posterior $p(z|x)$. This is Variational Inference. The most popular and common way to do that is by minimizing KL divergence:

$$
D_{KL}(q_{\phi}(z)||p(z|x)) = \int q_{\phi}(z) \log \frac{q_{\phi}(z)}{p(z|x)} dz
$$
 (1)

We have that $D_{KL}(q_{\phi}(z)||p(z|x)) = 0$ if and only if $q_{\phi}(z) = p(z|x)$. If we continue Eq. [\(1\)](#page-0-0) we have the following:

$$
D_{KL}(q_{\phi}(z)||p(z|x)) =
$$
\n
$$
= \int q_{\phi}(z) \log \frac{q_{\phi}(z)}{p(z|x)} dz
$$
\n
$$
= -\int q_{\phi}(z) \log \frac{p(z|x)}{q_{\phi}(z)} dz
$$
\n
$$
= -\int q_{\phi}(z) \log \frac{p(z,x)}{p(x)q_{\phi}(z)} dz
$$
\n
$$
= -\int q_{\phi}(z) \log \frac{p(z,x)}{q_{\phi}(z)} dz + \int q_{\phi}(z) \log p(x) dz
$$
\n
$$
= -\int q_{\phi}(z) \log p(z,x) dz + \int q_{\phi}(z) \log q_{\phi}(z) dz + \int q_{\phi}(z) \log p(x) dz
$$
\n
$$
-L = -ELBO = -\mathbb{E}_{q_{\phi}(z)} [\log p(z,x)] + H[q_{\phi}(z)]
$$
\n
$$
\Rightarrow D_{KL}(q_{\phi}(z)||p(z|x)) = -L + \log p(x)
$$
\n
$$
\Rightarrow L = \log p(x) - D_{KL}(q_{\phi}(z)||p(z|x))
$$
\n
$$
\Rightarrow \log p(x) = L + D_{KL}(q_{\phi}(z)||p(z|x))
$$
\n
$$
\Rightarrow \log p(x) \ge L
$$
\n
$$
= \mathbb{E}_{q_{\phi}(z)} [\log p(z,x) - q_{\phi}(z)]
$$

Eq. [\(1\)](#page-0-0) is in general intractable since the target posterior distribution $p(z|x)$ is unormalized and we need to integrate over all configurations of the hidden variables in order to compute the denominator in the target posterior distribution:

$$
p(z|x) = \frac{p(x|z)p(z)}{p(x)} = \frac{p(x|z)p(z)}{\int_{z} p(x|z)}\tag{2}
$$

3 Sliced Wasserstein Variational Inference

This VI method does not utilize KL divergence, but minimizes Sliced Wasserstein distance [\(Bonneel et al., 2015\)](#page-6-0), which reduces computational inefficiency by projecting high dimensional probability distributions into univariate slices. Sliced Wasserstein distance can be easily approximated by a few MCMC steps. This method called Sliced Wasserstein Variational Interence(SWVl) [\(Yi and](#page-6-1) [Liu, 2022\)](#page-6-1).

3.1 Wasserstein distance

Wasserstein distance arises in the context of optimal transport problem [\(Villani,](#page-6-2) [2009\)](#page-6-2), and measures the cost of moving probability mass to transform a probability distribution to another. We define marginal distribution $p(x)$ in X, $q(y)$ in $\mathcal{Y}, \prod(p, q)$ a set of any coupled joint distributions $\gamma(x, y)$ where $\int \gamma(x, y) dx =$

 $q(y)$ and $\int \gamma(x, y) dy = p(x)$. These two last properties, $\int \gamma(x, y) dx = q(y)$ and $\int \gamma(x, y) dy = p(x)$, must be satisfied and they basically mean that the two qualities $p(x)$ and $q(y)$ need to be of equivalent size. We note that $\int \gamma(x, y)$ denotes a transportation plan. Then the c-Wasserstein distance is defined as :

$$
\mathcal{W}_c(p,q) = \left\{ \inf_{\gamma \in \prod(p,q)} \int_{\mathcal{X} \times \mathcal{Y}} ||x-y||^c d\gamma(x,y) \right\}^{\frac{1}{c}} \tag{3}
$$

where $||x - y||$ is the cost function of moving a point from X to Y. The inf symbol in Eq. [\(3\)](#page-2-0) means the greatest lower bound of the set. Also in Eq. [\(3\)](#page-2-0) $c > 1$, and if $c = 1$ then \mathcal{W}_c is called Earth Mover distance. The choice of c affects the Wasserstein distance for instance in the case of outliers. Let us compare the choices of $c = 1$ and $c = 2$. We define a probability density that is 95% in the range of $[0, 1]$ but there are some outliers, 5% in the range $[5, 6]$. The goal is to move this probability density. In this case the \mathcal{W}_2 distance will be much higher than the W_1 . This happens because W_1 penalizes less the outliers and therefore is more robust than \mathcal{W}_2 . So the best transportation plan is dependent on the outliers and moving the outliers' mass effectively is important $¹$ $¹$ $¹$.</sup>

Intuitively, the c-Wasserstein distance finds eventually an optimal joint distribution $\gamma(x, y)$ that minimizes the expected cost function \mathcal{W}_c in Eq. [\(3\)](#page-2-0). Minimizing Eq. [\(3\)](#page-2-0) is generally difficult and computationally expensive since we have to find the infimum of all sets. We can rewrite the c-Wasserstein distance in a univariate case as an analytical solution:

$$
\mathcal{W}_c(p,q) = \left\{ \int_0^1 |F_p^{-1}(t) - F_q^{-1}(t)|^c dt \right\}^{\frac{1}{c}} = \left\{ \int_{\mathcal{X}} |x - F_q^{-1}(F_p(x))|^c dx \right\}^{\frac{1}{c}} \tag{4}
$$

where $F(\cdot)$ is a cumulative distribution function (CDF) and $F^{-1}(\cdot)$ is a quantile function of a probability distribution (or inverse cumulative distribution function), and the $F_q^{-1}(F_p(\cdot))$ is the transportation map that moves probability density mass from $p(x)$ to $q(y)$. We can use Eq. [\(4\)](#page-2-2) to estimate c-Wasserstein distance by sorting samples. We note that optimal transport preserves the order of probability mass elements so mass at quantile t of p moves to quantile t of q. Fig. [1](#page-3-0) depicts an intuitive example of how optimal transport, and therefore how c-Wasserstein distance works.

3.2 Sliced Wasserstein distance

Drawing motivation from the univariate case for c-Wasserstein distance we briefly present Sliced Wasserstein distance. We start by introducing Radon transformation [\(Beylkin, 1984\)](#page-6-3). For a density f the Radon transform represents the projection data obtained as the output of a tomographic scan. So the inverse can reconstruct the density. Let $h(\cdot)$ be a function $h(\cdot): \mathbb{R}^d \to \mathbb{R}$. The Radon transform is the following:

 1_A more detailed explanation can be found in [https://stats.stackexchange.com/](https://stats.stackexchange.com/questions/490069/what-is-the-intuitive-difference-between-wasserstein-1-distance-and-wasserstein)

[questions/490069/what-is-the-intuitive-difference-between-wasserstein-1-distance-and-wasserstein](https://stats.stackexchange.com/questions/490069/what-is-the-intuitive-difference-between-wasserstein-1-distance-and-wasserstein)

Figure 1: "Horizontal" distances where the transport T is calculated in the picture on the right as in the 1D case by imposing equality between the blue and red areas of functions f and g respectively by using CFD functions. In this specific case and according to Eq. [\(4\)](#page-2-2) where $T(x) = F_q^{-1}(F_p(x))$. Figure taken from [Santambrogio](#page-6-4) [\(2015\)](#page-6-4).

$$
h_{\theta}^{R}(l) = \int_{S:l = \langle x, \theta \rangle} h(x)dS
$$
\n(5)

Radon transform defines a surface integral on a hyper-plane $S: l = \langle x, \theta \rangle$ where $l \in \mathbb{R}$ and $\theta \in \mathbb{S}^{d-1}$, where \mathbb{S}^{d-1} is a unit ball embedded in \mathbb{R}^d . So for any pair of vectors θ and h we obtain a sliced function $h_{\theta}^{R}(\cdot)$, and the sliced function in Eq. [\(5\)](#page-2-3) is univariate since \mathbb{S}^{d-1} is a unit ball. Basically Radon transform projects a high dimensional distribution into a univariate distribution. Radon transform of a density can be defined as a series of line integrals through that density at different offsets from the origin. The value of the density at a particular line is equal to the line integral of the density over that line. This is depicted in Fig. [2.](#page-3-1)

Figure 2: Radon transform of a density can be defined as a series of line integrals through that density at different offsets from the origin. Figure taken from this [link.](https://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/AV0405/HAYDEN/Slice_Reconstruction.html)

Leveraging the fact that Eq. [\(5\)](#page-2-3) is univariate we define the Sliced Wasserstein distance for distributions $p(x)$ and $q(y)$ as the average distance of these slices as follows:

$$
SW_c(p,q) = \left(\int_{\theta \in \mathbb{S}^{d-1}} \mathcal{W}_c^c(p_\theta^R, q_\theta^R) d\theta\right)^{\frac{1}{c}} \tag{6}
$$

So given an empirical distribution $\hat{p} = \frac{1}{n} \sum_{i=1}^{n} \delta_{x_i}$, its Radon transformation is $\hat{p}_{\theta}^R = \frac{1}{n} \sum_{i=1}^n \delta_{(x_i,\theta)}^R$. We calculate Sliced Wasserstein distance in Eq. [\(6\)](#page-3-2) via estimating samples as shown in Algorithm [1.](#page-4-0) We sort the samples since we want to calculate the closest distances between the slices of the two distributions p and q .

Algorithm 1 Estimation of Sliced Wasserstein Distance with Samples

Require: $\hat{p} = \frac{1}{n} \sum_{i=1}^{n} \delta_{x_i}$ and $\hat{q} = \frac{1}{n} \sum_{i=1}^{n} \delta_{y_i}$ for $k = 0, 1, \ldots, m$ do

Sample θ_k from \mathbb{S}^{d-1} uniformly \triangleright we sample θ from the unit ball. Obtain slices and sort $\{\langle x_i, \theta_k \rangle\} \rightarrow \{\langle x_j, \theta_k \rangle\}$ and $\{\langle y_i, \theta_k \rangle\} \rightarrow \{\langle y_j, \theta_k \rangle\}$ \triangleright we take slices and sort them.

 $\textbf{return}~\mathcal{SW}_c(\hat{p},\hat{q})=\left(\frac{1}{mn}\sum_{k=1}^m\sum_{j=1}^n |\left\langle x_j, \theta_k\right\rangle-\left\langle y_j, \theta_k\right\rangle|^c\right)^{\frac{1}{c}}$ end for

3.3 Proposed Method

Following from the previous subsections we finally end up with the proposal, Sliced Wasserstein Variational Inference (SWVI). Let $q_{\phi}(z)$ be the variational distribution parameterized by ϕ , and $p(z|x)$ the target posterior distribution. We need to find optimal parameter ϕ^* that minimizes Sliced Wasserstein distance between $q_{\phi}(z)$ and $p(z|x)$. So we have the same problem to solve:

$$
\phi^* = \arg\min_{\phi} \mathcal{S}W_c(p, q_\phi) \tag{7}
$$

Due to the intractability of $p(z|x)$ as we mentioned in Eq. [\(1\)](#page-0-0), we use MCMC to estimate the distance between $q_{\phi}(z)$ and $p(z|x)$. Let $\mathcal{K}(\cdot)$ be a transition kernel of an MCMC with the stationary distribution $p(z|x)$, and $q_{\phi}(z)$ to be the initial distribution that we start sampling from with MCMC. Let $q^t(z)$ be the marginal distribution of MCMC after t transitions. Then we would have:

$$
q^{t}(z) = \int q^{t-1}(z')\mathcal{K}(z|z')dz'
$$
\n(8)

where $q^0(z) = q_\phi(z)$. For $t \to \infty$ $q^t(z)$ converges to $p(z|x)$ because of the stationary property of MCMC. So we could evaluate $\mathcal{SW}_c(p,q)$ directly via:

$$
SW_c(p, q_{\phi}) = SW_c(q^t, q_{\phi}) \text{ as } t \to \infty
$$
\n(9)

This is of course time consuming and there are also other problems to consider such as the burn-in period. Instead we evaluate a local distance $\mathcal{SW}_c(q^t, q_\phi)$

with just a few t steps of MCMC. Then we optimize use this local distance $\mathcal{SW}_c(q^t, q_\phi)$ to update parameters ϕ with Gradient Descent as follows:

$$
\phi' \leftarrow \phi - a \nabla_{\phi} \mathcal{S} W_c(q^t, q_{\phi}) \tag{10}
$$

 $q^t(z)$ is an improvement of q_{ϕ} and minimizing the Sliced Wasserstein distance between those two guides the variational distribution $q_{\phi}(z)$ towards distribution $p(z|x)$. What we can do in this case is to use Monte Carlo methods to estimate $\mathcal{SW}_c(q^t, q_\phi)$ as described in Algorithm [1.](#page-4-0) The difference in Algo-rithm [1](#page-4-0) is that we sample from $q_{\phi}(z)$ and $q^t(z)$ instead of $q_{\phi}(z)$ and $p(z|x)$. Let $\{z_i^0\}_{i=1,2,...,n} \sim q_\phi(z)$ and $\{z_i^t\}_{i=1,2,...,n} \sim q^t(z)$. Then we approximate Sliced Wasserstein distance with:

$$
SW_c(q^t, q_\phi) \approx \mathcal{L}(\{z_i^0\}, \{z_i^t\})
$$
\n⁽¹¹⁾

Basically we rewrite Sliced Wasserstein distance as a function of two sets of samples. In order to optimize the parameters of variational distribution $q_{\phi}(z)$ we need to reparameterize the samples of its set $\{z_i^0\}_{i=1,2,...,n}$, since the samples are not differentiable yet. For that we use an amortized sampler (a parametric probability distribution or a flexible neural network) as $z(\phi) = g_{\phi}(\epsilon), \epsilon \sim r(\epsilon)$, where $r(\epsilon)$ is a noise distribution and $g_{\phi}(\epsilon)$ is a parametric model. Using the chain rule on Eq. [\(11\)](#page-5-0) we have:

$$
\nabla_{\phi} \mathcal{L}(\{z_i^0\}, \{z_i^t\}) = \sum_{i=1}^n \nabla_{z_i} \mathcal{L}(\{z_i^0\}, \{z_i^t\}) \nabla_{\phi} z_i^0
$$
(12)

Algorithm 2 Sliced Wasserstein Variational Inference (SWVI)

Require: An unnormalized probability distribution $p(z|x)$ and learning rate a. sampler $q_{\phi 0}(z)$ for $m = 0, 1, \ldots, s - 1$ do Sample $\{z_i^0\}_{i=1,2,\ldots,n}$ from $q_{\phi_m}(z)$ Run MCMC towards $p(z|x)$ with particles (samples) initialized at $\{z_i^0\}_{i=1,2,...,n}$ to get $\{z_i^t\}_{i=1,2,...,n}$ $\phi_{m+1} = \phi_m - a\nabla_\phi \mathcal{L}(\left\{z_i^0\right\}, \left\{z_i^t\right\}$ return $q_{\phi_s}(z)$ end for

References

- Gregory Beylkin. 1984. The inversion problem and applications of the generalized radon transform. Communications on pure and applied mathematics 37(5):579–599.
- Nicolas Bonneel, Julien Rabin, Gabriel Peyré, and Hanspeter Pfister. 2015. Sliced and radon wasserstein barycenters of measures. Journal of Mathematical Imaging and Vision 51(1):22–45.
- Filippo Santambrogio. 2015. Optimal transport for applied mathematicians. Birkäuser, NY 55(58-63):94.
- Cédric Villani. 2009. Optimal transport: old and new, volume 338. Springer.
- Mingxuan Yi and Song Liu. 2022. Sliced wasserstein variational inference. In Proceedings of the Advances in Approximate Bayesian Inference.

