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1 Introduction

In these notes I explain the paper Bayesian Deep Learning via Subnetwork Inference from Daxberger
et al. (2021). I will also some notes on an idea that I have to apply SGMCMC only on a subnetwork
chosen by the method proposed in the aforementioned paper.

2 Motivation

Overparameterization. It has been shown that near the local optima there can be different direc-
tions of the gradient providing the same performance (Maddox et al., 2020). NNs can also be extremely
pruned without sacrificing accuracy (Frankle and Carbin, 2018; Panousis et al., 2019).

Subnetwork inference. There has already been some work that proved that inference can be
applied effectively only in a small part of the network (Snoek et al., 2015; Izmailov et al., 2020), like
over low-dimensional projections of the weights, or only the last layer of a NN.

3 Preliminaries

Let data D = {y,X} and p(w) the prior over the NN weights. Then the full posterior is the following:

p(w|D) = p(w|y,X) ≈ p(y|X,w)p(w) (1)

As we know the computation of the posterior is challenging and therefore we approximate it.

p(w|D) ≈ p(ws|D)
∏
i

δ(wr − ŵr)

≈q(ws)
∏
r

δ(wr − ŵr)

(2)

The first equation in Eq. (2) breaks the posterior in a posterior only over a subnetwork of the full
network p(ws|D) and some dirac functions δ(wr − ŵr). The dirac functions are over the remaining
weights out of the subnetwork ws ∈ Rs to keep them at fixed values ŵr ∈ R. We further approximate
p(ws) since it is still computationally challenging with an approximate distribution q(ws).
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Note. The idea in Eq. (2) is to set the variance of the fixed wrs to zero, in contrast with pruning
methods that set the weights to zero. In that way we remove the variances of the weights but we keep
their predictive mean to retain accuracy to the full model.

4 Linearized Laplace

This part of the notes is defined in more detail in my other notes. In this section I will briefly introduce
linearized Laplace approximation. Let a neural network denoted by function f : RI → RO. The weights
of the NN have a prior that is fully factorised Gaussian p(w) = N(w; 0, λI). We find the MAP as
follows:

ŵ = argmax
w

[log p(y|X,w) + log p(w)] (3)

The posterior can be approximated with a second order Taylor expansion around the MAP as
follows:

log p(w|D) ≈ logp(ŵ|D)− 1

2
(w − ŵ)⊺H(w − ŵ) (4)

where H is the hessian matrix of the negative log-posterior density w.r.t. the network weights w:

H = N · Ep(D)[−∂2 log p(y|X,w)/∂w2] + λI (5)

Then we can rewrite the approximate posterior as follows:

p(w|D) ≈ q(w) = N(w; ŵ,H(−1)) (6)

then the Hessian can be replaced with the generalized Gauss-Newton matrix (GGN) H̃ ∈ RD×D

as follows:

H̃ =

N∑
n=1

J⊺
nHnJn + λI (7)

where Jn = ∂f(xn, w)/∂w ∈ RO×D is the Jacobian of the model outputs f(xn, w) ∈ RO w.r.t.
w, and Hn = −∂2 log p(y|f(xn, w))/∂

2f(xn, w) ∈ RO×O is the Hessian of the negative log-likelihood
w.r.t. model outputs. It has been proved that when we use a Gaussian likelihood, the Gaussian with
a GGN precision matrix corresponds to the true posterior distribution when the NN is approximated
with a first-order Taylor expansion around the MAP ŵ. Then the locally linearized function is:

flin(x,w) = f(x, ŵ) + Ĵ(x)(w − ŵ) (8)

where Ĵ = ∂f(x, ŵ)/∂ŵ ∈ RO×O is the Jacobian. In this way we convert the BNN into a generalized
linear model (GLM), where the Jacobian Ĵ acts as the basis function expansion.

5 Linearized Laplace Subnetwork Inference

In this section I present the procedure of inference in a subnetwork.
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Step 1: Point Estimation. We train a NN and obtain a point estimate of the weights ŵ.

Step 2: Subnetwork Selection. We select a small subnetwork that ideally produces a predictive
posterior closest to the full predictive posterior of the full network. The way that we do that is
by minimizing the Wasserstein distance between the weight posterior of the subnetwork and the full
network.

The goal is to minimize the discrepancy between the exact posterior of the full network and the
subnetwork approximate posterior. The first challenge on that is that computing the exact posterior
distribution remains intractable. The second challenge is that the KL divergence or the Hellinger
distance is not very well defined for the Dirac delta distributions in Eq. (2). To overcome the first
issue we resort to local linearization that we mentioned earlier, so we have the true posterior of the
linearized model:

p(w|D) ≃ N(w; ŵ, Ĥ−1) (9)

For the second issue we use the squared 2-Wasserstein distance, which is well defined for distribu-
tions with disjoint support (for instance dirac distributions). So in our case we have:

W2(p(w|D), qs(w))
2 =

= W2(N(µ1,Σ1), N(µ2,Σ2))

= ||µ1 − µ2||22 + Tr(Σ1 +Σ2 − 2(Σ
1/2
2 Σ1Σ

1/2
2 )1/2)

(10)

In our case both distributions have the same mean µ1 = µ2 = ŵ. The true posterior’s covariance
matrix is the inverse GGN matrix, i.e. Σ1 = Ĥ−1. For the approximate posterior of the subnetwork we
have Σ2 = Ĥ−1

S+ which is equal to Ĥ−1
S (the inverse GGN matrix of the subnetwork) padded with zeros

at the positions corresponding to point estimated weights wr matching the shape of Ĥ−1. We can also
define H̃−1

S+ = Ms ⊙ H̃−1, where ⊙ is the Hadamard produce and Ms is a mask matrix with zeros in
the rows and columns corresponding to wr, i.e. the rows and columns corresponding to weights not
included in the subnetwork. Thus we have:

W2(p(w|D), qs(w))
2 =

= W2(N(ŵ, H̃−1), N(ŵ, H̃−1
S+))

2

=�����||ŵ − ŵ||22 − Tr(H̃−1 + H̃−1
S+ − 2(H̃

−1/2
S+ H̃−1H̃

−1/2
S+ )1/2)

= Tr(H̃−1 + H̃−1
S+ − 2(H̃

−1/2
S+ H̃−1H̃

−1/2
S+ )1/2)

(11)

Finding the subset ws in Eq. (11) would be difficult as the weights depend on each other. Therefore
we make an assumption that the weights are independent among each other which results in the
following simplified objective:
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W2(p(w|D), qs(w))
2 =

= Tr(H̃−1 + H̃−1
S+ − 2(H̃

−1/2
S+ H̃−1H̃

−1/2
S+ )1/2)

= Tr(H̃−1) + Tr(H̃−1
S+)− Tr(2(H̃

−1/2
S+ H̃−1H̃

−1/2
S+ )1/2)

=

D∑
d=1

σ2
d +mdσ

2
d − 2mdσ

2
d

=

D∑
d=1

σ2
d(1−md)

(12)

where md is the dth diagonal element of Ms, i.e. md = 1 if wd is included int he subnetwork
or 0 otherwise. As we can see Eq. (12) is minimized by a subnetwork containing the S weights with
highest variances. The selection strategy contains variances and not magnitudes as we target predictive
uncertainty rather than accuracy.

Step 3: Bayesian Inference. We use the GGN-Laplace approximation to infer a full-covariance
Gaussian posterior over the subnetwork’s weights ws ∈ RS :

p(ws|D) ≈ q(ws) = N(ws; ŵs, H̃
−1
S ) (13)

where H̃−1
S ∈ RS×S is the GGN w.r.t. the weights ws:

H̃S =

N∑
n=1

J⊺
SnHnJSn + λSI (14)

In order to best preserve the magnitude of the predictive variance we udpate the precision to be
λS = λ · S/D. The weights not belonging in the subnetwork are fixed at their MAP values. Basically
we perform full Laplace inference over the selected subnetwork and MAP inference over all remaining
weights. Then the resulting approximate posterior will be the following:

qs(w) = N(ws; ŵs, H̃
−1
S )

∏
r

δ(wr − ŵr) from Eq. (13) (15)

A small issue here is storing and inverting H̃S , but if the subnetwork is very small it is feasible.

Step 4: Prediction. We perform a local linearization of the NN while fixing wr to ŵr:

flin(x,ws) = f(x, ŵ) + ĴS(x)(wS − ŵS) (16)

the corresponding predictive distributions for regressions are:

p(y⋆|x⋆, D) = N(y⋆; f(x⋆, ŵ),ΣS(x
⋆) + σ2I) (17)

and for classification:

p(y⋆|x⋆, D) ≈ softmax

(
f(x⋆, ŵ)√

1 + π
8 diag(ΣS(x⋆))

)
(18)
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