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Abstract—Knee Osteoarthritis(KOA) is a serious disease that
causes a variety of symptoms, such as severe pain and it is mostly
observed in the elder people. The main goal of this study is
to build a prognostic tool that will predict the progression of
pain in KOA patients using data collected at baseline. In order
to do that we leverage a feature importance voting system for
identifying the most important risk factors and various machine
learning algorithms to classify, whether a patient’s pain with
KOA, will stabilize, increase or decrease. These models have
been implemented on different combinations of feature subsets,
and results up to 84.3% have been achieved with only a small
amount of features. The proposed methodology demonstrated
unique potential in identifying pain progression at an early stage
therefore improving future KOA prevention efforts.

Index Terms—machine learning, knee osteoarthritis, pain pre-
diction, feature selection, physical function, knee joint

I. INTRODUCTION

Knee OA is the most common form of osteoarthritis [21].
KOA results from the degeneration of cartilage in the knee,
which can happen due to aging, weight and injuries. Fur-
thermore, it results from genetic predisposition, biochemical
processes and mechanical forces. The certain disease process
begins before pain, symptoms and motion restriction are
noticed. Because of this and the fact that KOA is a progressive
disease, getting a tool for early detection and prediction as
early as possible is key [11]. Predicting this disease is a
difficult task because it entails multifactorial causation, which
is under investigation by the scientific community.

Increasingly data collection is a challenge for the scientific
community and leads to the use of machine learning tech-
niques to develop reliable tools for predicting KOA. Accord-
ing to the literature review several studies have shown that
machine learning models are used to predict KOA [14]. In
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2017, Lazzarini et. al. [15] investigated the contribution of
different variables (including biomarkers) within the predictive
models in overweight and obese women. The main aim of this
work was to discover and analyse the role of novel biomarkers
in KOA [15]. Furthermore, Halilaj et. al. [10] focused to
characterize different clusters of OA progression and build
models for early prediction of them by using self-reported knee
pain and radiographic assessments of joint space narrowing. In
another study, Pedoia et. al. [17] used MRI and biomechanics
multidimensional data to fill the gap in multidimensional data
analysis for prediction of KOA. This study was the first, which
provided large-scale integration of compositional imaging and
skeletal biomechanics. In 2019, Abedin et. al. [1] investigated
if the prediction accuracy of a statistical model based on
patient’s questionnaire data is comparable to the prediction
accuracy based on X-ray image. They presented comparable
accuracies for these two approaches and suggested as future
work a model based on both patient’s questionnaire data
and X-ray images. In another study the same year, Widera
et. al. [23] used clinical data and X-ray image assessment
metrics in a multi-classifier problem for prediction of KOA
progression by using different algorithms and learning process
configurations. Therefore, there is a need for further studies
and development of techniques for determining risk factors
that lead to the development of reliable tools for predicting
KOA.

The purpose of this study is: (i) to identify different clus-
ters of KOA pain progression, (ii) to identify informative
parameters that are relevant with pain progression from a
big pool of risk factors that are available in osteoarthritis
initiative (OAI) database and (iii) to build ML models that
can predict long-term pain progression using baseline data.
To accomplish the aforementioned targets, we built a ML-



empowered methodology capable of achieving state-of-the-
art accuracy results with the minimum possible number of
features. By using a relatively small number of features, and
at the same time not sacrificing test set performance, we can
run the algorithm faster at inference time, and implement
it in portable devices (e.g. a smartphone). The dataset, as
described in Section II has 726 features. By reducing this
number to a relatively small number features, for instance 25
we could create more possibilities for the implementation of an
algorithm in a small mobile device; or test the algorithm faster
in the subjects by requiring less computational power. In order
to do this we have developed a hybrid technique, in which we
derive the feature importance from different Feature Selection
(FS) algorithms via a common voting system. Afterwards,
we explored the suitability of different ML algorithms in an
extensive comparative experimentation, to distinguish the one
that produces the best results for our prediction.

The rest of the paper is organised as follows. Section
II gives a short description of the data used in our study,
whereas Section III presents the proposed methodology that
comprises of the following parts: (i) Grouping/Labeling of the
data, (ii) Feature Selection, (iii) Machine Learning models,
(iv) Validation. Results and discussions are given in section
IV and conclusions are drawn in the final section of the paper.

II. DATASET DESCRIPTION

Data from the OAI database was used in this work in order
to validate our approach. This database was designed for 2
specific reasons:(i) to identify the factors that cause KOA, (ii)
to promote the research in the area of KOA, which is going to
create a better quality of life for patients with KOA. The OAI
database was launched in 2002, and its data is from patients
in the ages 45-79 years old, either with symptomatic KOA,
or being on the verge of developing it, in at least one knee.
The study that produced this database had taken place in four
medical centers in the US. In total 4796 patients were enrolled
in the study, which lasted for 8 years. The most significant
thing about this database is that it had a more than 90% follow-
up for the first 4 years. In this paper though, we have not used
all of the features. We have developed a voting system for
assessing feature importance using only baseline data which
is described in Section III-C. WOMAC pain data from the first
four visits was utilized to identify the different clusters of pain
progression, whereas the selected feature subsets, as generated
by the application of proposed FS methodology on baseline
features, were used to train the ML models and finally produce
the predictions. Data from Osteoarthritis Initiative (OAI) is
available at http://www.oai.ucsf.edu/.

III. METHODOLOGY

The proposed, in this paper methodology, comprises of
the following components: (i) a fitting technique for group-
ing/labeling of the data, (ii) a hybrid and robust Feature
Selection technique employing a number of feature ranking
algorithms to avoid bias, (iii) Machine Learning models for
decision making and (iv) Validation.

A. Grouping/Labeling

The available data was grouped into three clusters, each one
representing a different pain progression condition:1) cluster
1: pain decline, 2) cluster 2: no significant pain change and
3) cluster 3: pain increase. To accomplish this, the following
methodology was applied. WOMAC pain (as represented by
the variables VxxWOMKPR and VxxWOMKRL for the right
and left leg, respectively where xx the number of the visit) was
collected for the first four (4) visits from each patient of the
OAI dataset. We selected only the first four visits because a
significant number of patients did not follow up after visit
4. Linear fitting( [20]) was applied on the WOMAC pain
progression data of each patient (Figure 1a) and the group-
ing was implemented based on the slope of the regression
line. The thresholds applied on the calculated slopes were
carefully selected towards the generation of equally sized,
well-represented and non-overlapping clusters. Indicative pain
progression data from each cluster are given in Figure 1 b)
and c). The proposed clustering methodology was applied
separately on each leg.

The rest of the ML components focus on the identification of
the most important risk factors from the OAI dataset, described
in Subsections III-B and III-C, and as well as the development
of the ML models that could discriminate patients belonging
to the three aforementioned clusters, described in Subsection
III-D.

B. Data Pre-Processing

For the preprocessing of the data we followed two pro-
cedures. The dataset has a lot of missing of values so we
used mode imputation to handle them( [12]). We used this
specific method because it is able to handle both numerical
and non-numerical variables. We also standarized the features
by subtracting the mean and scaling the values with respect
to variance. This is a common requirement, because some
ML algorithms behave badly, if the features are not normally
distributed( [7], [8]).

C. Feature Selection

A hybrid feature selection methodology was employed con-
sisting of filter, wrapper and embedded techniques, whereas
feature ranking was decided on the basis of a majority voting
system. Applying each technique separately, the order of the
feature importance emerged from the frequency of feature
appearance in the selection criteria. The features were ranked
with respect to the votes received.

The proposed feature selection proceeds along the following
steps:

Step1. All features were normalized as described in Subsection
III-B

Step2. We performed each one of the six FS techniques
separately resulting to the creation of the following six
feature subsets FSSi, ∀i = 1, . . . , 6

Step3. Main loop
Step3.1. For each feature j, we set ∀j = 1, . . . ,M ,

where M the total number of features



Fig. 1. a) Example of actual pain progression data and the associated fitted line, b) representative examples from pain progression clusters 1 (pain decline)
and 2 (no significant pain change), c) representative examples from pain progression clusters 2 (no significant pain change) and 3 (pain increase)

Step3.2. Set j = 1
Step3.3. If a feature j is selected in FFSi, then

Vj = Vj + 1;
Step3.4. We repeat step 3.2 for each one of the six FS

techniques
Step3.5. Set j = j + 1 and return to step 3.2

Terminate main loop when j > m

Step4. Rank features to descending order with respect to Vj

end
The table III-C gives a brief background description of

employed Feature Selection techniques.

D. Machine Learning Algorithms

Six (6) Machine Learning models were explored for their
suitability in predicting pain progression on feature subsets of
varying dimensionality, in order to see which one produces
the best results. In this subsection we give a brief overview
of the models that were employed in order to tackle the pain
prediction problem.

1) Decision Trees: Decision Tree [18] is one of the most
famous algorithms for supervised learning for classification
problems. It uses a lot of if-then-else decision rule statements
in order to come to a decision. Its structure is a branch
structure which breaks the data into data subsets, and then it
produces decision and leaf nodes. Every node has a minimum
of two branches, and every leaf node is for classification or a
decision prediction.

2) k Nearest Neighbors: k Nearest Neighbors (kNN) [6] is
a non-parametric, lazy learning algorithm. The classification
prediction of a sample datapoint, is achieved with the use of
data, which are class-separated. The algorithm presumes that
similar datapoints are close to each other. More specifically,
this algorithm loops over every datapoint in the data and
calculates the distance between every datapoint and the chosen
datapoint. The distances are sorted in an ascending order and
then the algorithm chooses the first k entries.

3) Support Vector Machines: Support Vector Machines
(SVM) [5] is an algorithm which finds a line that separates



Category Technique Description Termination criterion

Filter

Pearson
Correlation
[2]

Pearson correlation examines the correlation between two features.
For linear dependence the correlation coefficient is ± 1 and 0 for no
dependence. If there is a high correlation between the two variables,
each variable is examined with the dependent (target). The variable
with the highest correlation remains while the other is rejected. In
this way, the other features also emerge.

Chi-2 [22]

Chi-2 is a test method for various range of data. It compares two
or more sample rates (or composed ratios) and the correlation of
two categorical variables. It also works in a hand-wavy way with
non-negative numerical and quantitative features.

The selection process was terminated
when 30 features have been selected.

Wrapper

Recursive
Feature
Elimi-
nation
(RFE) [24]
Logistic
Regression
classifier

Given an external estimator that assigns weights to features (Logistic
Regression), recursive feature elimination is to select features by
recursively considering smaller and smaller sets of features. First,
the estimator is trained on the initial set of features. Then, the least
important features are pruned from the current set of features. That
procedure is recursively repeated on the pruned set until the desired
number of features to select is eventually reached.

Logistics
Regression
(L2
penalty)
[25]

This embedded model returns a subset of selected features relying
on regularized logistic regression models. It incorporates feature
selection as a part of the model fitting/training process, and features
for optimizing the objective function of the learning model.

Embedded

Random
Forest [16]

It measures the importance of the features in the prediction. The
method rearranges stochastically all values of the features for each
tree and uses the RF model to predict this permuted feature.

Each one of the three FS techniques has
a different termination criterion leading

to a different number of selected
features.

LightGBM
[13]

It is a novel Gradient Boosting Decision Tree (GBDT) algorithm.
A greedy algorithm can achieve quite good approximation ratio. So,
this approach can effectively reduce the number of features without
hurting the accuracy of split point determination by much and speeds
up the training process of conventional GBDT.

TABLE I
FEATURE SELECTION TECHNIQUES

the datapoints, that belong to different classes. The datapoints
that are closest to the line play a crucial role in the learning
process e ( the so-called support vectors). Then the distance
between the line and every datapoint is calculated, with an
overall target to maximize the distance between classes. In
case a non-linear separation is needed, kernels are applied in
order to project the datapoints into higher dimensional spaces.

4) Random Forest: Random Forest is an algorithm con-
sisted of many decision trees algorithms [3]. Its characteris-
tics are the randomness in the sampling of datapoints when
building the trees; and the randomness in the features subsets,
when splitting nodes. Every tree in the algorithm learns from
a random sample of data. These samples of data are being
used several times by the trees, which means that the trees
take them with replacement. So every tree has high variance
because of this fact, but the random forest has lower variance
in overall. It is worth noting that the decisions are the average
of the predictions of all the trees in the random forest.

5) XGBoost: XGBoost or eXtreme Gradient Boosting [4],
is a parallel tree boosting that solves data science problems in
a fast and accurate way. After constructing the boosted trees
the algorithm calculates the importance score of every feature
of the dataset. This score is an indicator of how useful is its
feature to the construction of the trees inside the algorithm.
The calculation of this score is achieved by the amount that
each feature point split improves the performance for the

model for the data that the node is responsible for. A popular
measure of performance is the Gini index which selects the
split points( [9]). More specifically the Gini coefficient is
a statistic which quantifies the amount of inequality that
exists in a population. It is a number between 0 and 1,
with 0 representing perfect equality and 1 perfect inequality.
XGBoost in fact ranks the features of the data by comparing
them to each other.

6) Naive Bayes: Naive Bayes is a probabilistic classifier
that uses the Maximum A Posteriori decision rule in a
Bayesian setting and is included in supervised learning [19].
The main idea behind this method is the Bayes Theorem.
Bayes theorem approximates the probability of an event given
the probability of a past event. The Naive Bayes predicts
membership of probabilities for every class, such as the
probability that the given data point belongs to a particular
class. The data point belongs to the class with the highest
probability score.

E. Validation

We validated the results by performing a 70%-30% train-test
split. Learning of the algorithms was achieved on the stratified
version of the train and the final performance was calculated
on the test data.



IV. RESULTS

Tables II and V present the feature ranking exploration of
the first 10 Features of the whole dataset for the left and the
right knee, respectively. The feature ranking was decided on
the basis of a majority vote scheme by using the proposed
feature selection methodology, as discussed in Section III-C.
We also note, that features related to symptoms were selected.

A. Results on Left Leg

1) Feature Selection Results: Table II shows in order of
importance the features for the left knee after the FS imple-
mentation. It was noted that the features that occupied the first
positions, concern self-reported data about pain, difficulties
in daily life and quality of life in knee-related functions.The
following features were selected due to the direct correlation
of these symptoms with the presence or imminent development
of KOA, a finding that emerges from the literature survey. We
can observe that these features are directly related to pain on
the left leg.

Features Description
V00WPLKN5 Left knee pain: standing, last 7 days
V00WPLKN4 Left knee pain: sit or lie down, last 7 days
V00WPLKN3 Left knee pain: in bed, last 7 days
V00WPLKN2 Left knee pain: stairs, last 7 days
V00WPLKN1 Left knee pain: walking, last 7 days
V00WOMKPL Left knee: WOMAC Pain Score
V00P7LKFR Left knee pain: how often
V00KQOL4 Quality of life: how much difficulty with knee(s)
V00DIRKN7 Right knee difficulty: in car/out of car, last 7 days
V00DILKN6 Left knee difficulty: walking, last 7 days

TABLE II
MOST IMPORTANT FEATURES FOR THE LEFT LEG

2) Performance: Table III cites the results of various al-
gorithms applied on different combinations of feature subsets
as they have been ordered by the proposed FS methodology.
It was observed that RF achieved the best accuracy score,
which is 84.3% at the first 25 features, whereas the inclusion
of additional features led to a progressive decline in the ac-
curacies achieved. The table IV shows the confusion matrices
of the best performing model RF. The rest of the ML models
achieved inferior results, with SVM producing the second best
results with 80.83% accuracy score. In overall, as we add more
features to the aforementioned models, we observe that their
accuracy scores decrease.

B. Results on Right Leg

1) Feature Selection Results: Table V depicts in order
of importance the features for the right knee after the FS
implementation. It was observed that 7 out of the 10 first
selected features were the same with the ones selected for
the left leg. This finding indicated the selected features that
lead to the prediction of KOA for each leg have uniformity
and mainly concern self-reported data on pain, stiffness and
quality of life.

DT KNN NB RF SVM XGB
5 64.46% 57.02% 70.25% 71.07% 66.12% 63.64%
10 71.9% 71.07% 73.55% 79.34% 73.55% 74.38%
15 71.9% 76.86% 76.03% 77.69% 75.21% 80.99%
20 71.9% 76.86% 73.55% 81.82% 72.73% 83.47%
25 66.94% 79.34% 69.42% 84.3% 78.51% 80.99%
50 68.6% 69.42% 71.07% 75.21% 78.51% 74.38%

100 73.55% 73.55% 69.42% 76.86% 78.51% 83.47%
150 67.77% 67.77% 68.6% 78.51% 76.86% 79.34%
200 58.68% 67.77% 71.9% 76.03% 78.51% 77.69%
250 61.16% 71.9% 65.29% 74.38% 76.86% 76.86%
300 67.77% 66.12% 61.16% 75.21% 81.82% 79.34%
350 64.46% 61.16% 63.64% 76.03% 76.86% 76.03%
400 60.33% 61.98% 62.81% 74.38% 75.21% 76.03%
450 56.2% 66.12% 61.98% 79.34% 78.51% 77.69%
500 58.68% 58.68% 62.81% 69.42% 77.69% 76.86%
550 61.98% 64.46% 62.81% 77.69% 76.86% 75.21%
600 55.37% 63.64% 60.33% 76.86% 71.07% 75.21%
650 61.98% 61.98% 58.68% 72.73% 74.38% 73.55%
700 50.41% 56.2% 58.68% 70.25% 72.73% 76.03%
750 74.38% 60.33% 58.68% 71.9% 71.9% 75.21%

TABLE III
LEFT LEG: FEATURES AND MODEL ACCURACY SCORES

Class 1 Class 2 Class 3 Per class accuracy
Class 1 28 3 12 65.12%
Class 2 0 33 0 100%
Class 3 7 0 38 79.17%

TABLE IV
RANDOM FOREST: CONFUSION MATRIX

Features Description
V00P7RKFR Right knee pain: how often
V00WPRKN5 Right knee pain: standing, last 7 days
V00WPRKN4 Right knee pain: sit or lie down, last 7 days
V00WPRKN3 Right knee pain: in bed, last 7 days
V00WPRKN2 Right knee pain: stairs, last 7 days
V00WPRKN1 Right knee pain: walking, last 7 days
V00WOMKPR Right knee: WOMAC Pain Score (calc)
V00KSXLKN2 Left knee symptoms last 7 days
V00KPRKN3 Right knee pain: bending knee fully, last 7 days
V00DIRKN3 Right knee difficulty: stand from sitting, last 7 days

TABLE V
MOST IMPORTANT FEATURES FOR THE RIGHT LEG

2) Performance: For the right leg, Table VI shows the
results of the machine learning algorithms that we have applied
on different combinations of feature subsets, created by the FS
methodology. The best performing algorithm for the right leg
is Random Forest with an accuracy score of 84.3%, for 20
features; and as you can see the addition of additional extra
features has produced inferior results for our prediction. Table
VII shows the confusion matrix of the Random Forest for the
best prediction score that it has produced. It is observed that
the other algorithms have achieved inferior results

As observed from the Tables V, II and the Figure 2, similar
results are obtained on both legs; indicating the repeatability
and robustness of the proposed methodology.

V. DISCUSSION AND CONCLUSIONS

In this work we have proposed a methodology in which
we identified three different clusters of KOA pain progression



DT KNN NB RF SVM XGB
5 63.33% 68.33% 73.33% 69.17% 70.0% 68.33%
10 75.83% 75.83% 75.83% 76.67% 75.0% 75.0%
15 73.33% 75.0% 75.0% 76.67% 79.17% 70.83%
20 65.0% 70.83% 76.67% 82.5% 80.0% 74.17%
25 69.17% 65.0% 77.5% 75.0% 77.5% 75.0%%
50 72.5% 66.67% 73.33% 78.33% 79.17% 75.83%

100 65.0% 64.17% 70.83% 78.33% 78.33% 78.33%
150 67.5% 58.33% 66.67% 77.5% 80.83% 77.5%
200 60.0% 60.83% 62.5% 77.5% 78.33% 79.17%
250 75.0% 58.33% 63.33% 77.5% 78.33% 73.33%
300 68.33% 58.33% 64.17% 78.33% 80.0% 78.33%
350 60.0% 45.83% 63.33% 73.33% 76.67% 78.33%
400 60.83% 53.33% 63.33% 74.17% 75.83% 75.0%
450 59.17% 60.0% 60.83% 75.0% 77.5% 75.0%
500 55.83% 58.33% 59.17% 74.17% 77.5% 73.33%
550 52.5% 53.33% 55.0% 71.67% 77.5% 75.0%
600 65.0% 50.83% 55.0% 69.17% 74.17% 76.67%
650 65.83% 50.83% 54.17% 69.17% 74.17% 74.17%
700 60.83% 51.67% 52.5% 75.83% 77.5% 74.17%
750 65.0% 50.83% 50.83% 71.67% 75.83% 73.33%

TABLE VI
LEFT LEG: FEATURES AND MODEL ACCURACY SCORES

Class 1 Class 2 Class 3 Per class accuracy
Class 1 28 5 7 70%
Class 2 0 39 0 100%
Class 3 8 1 32 78%

TABLE VII
RANDOM FOREST: CONFUSION MATRIX FOR THE LEFT LEG
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Fig. 2. The comparison of the performance of Random Forest on both legs
in accordance to the number of features

along with the most informative parameters towards the devel-
opment of prognostic ML models that can predict long-term
pain progression. In order to achieve this we have developed
a voting system for feature importance, in which 6 different
methods are used to show the most important features in the
dataset. Then we applied 6 different models in various subsets

of data, which procedure has proved that XGB achieves a
state-of-the-art accuracy score by using only a small number
of features. As you can see on Tables VI and III we present
the results of our analysis on various combinations of models
and numbers of features. Tables V and II present the 10 most
important features for KOA pain progression on the right and
the left leg respectively.

Summing up we have used for this work only data from
the baseline and not from future visits for our prediction.
Moreover, we detect the basic trends in pain progression so
that we can construct the 3 classes of patients, as we mentioned
in Subsection III-A. More specifically we have achieved an
84.3% for the prediction of pain on the left leg, and an 82.5%
on the right leg. An important observation here is that these
high accuracy scores were achieved by using a relatively small
subset of features(25 features for the left leg, and 20 for
the right leg) that share similar characteristics. It was also
observed from the Tables V and II that the most important
features for the pain progression prediction are related directly
with the pain on each leg respectively. These accuracy scores,
with the combination of a small number of features, can set
the foundation, for the development of robust tools capable
of identifying pain progression at an early stage therefore
improving future KOA prevention efforts. Our ultimate goal
is to improve the quality of life for people with KOA. For our
future work, we are planning to also consider imaging data and
associated image-based biomarkers that are expected to further
improve the predictive capacity of the proposed methodology.
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